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1. _Introduction.

The characterization of a physical system, i.e., the cataloging

of the significant facts concerning its physical behavior generalliy
suggests the mode of representation of the system for purposes of analysis.

Newtonian mechanics as well as quantum mechanics is based on the
concept of state for describing physical systems. In the special case
where the state space is finite-dimensional and the evolution of the
system is governed by a differential or difference equation, a large
body of theory has been developed over the past few years ("state-variable
techniques), especially with respect to problems involving control systems

"

i1, 2]. Despite the increasing emphasis on the "state-variable" approach,
much of the literature on linear systems continues to be written in terms
of input-output relations, since, in many situations, the latter is a
natural mode of system description. The parallel developments of the
input-output and the state~variable approaches to system analysis have

left much in their wake that is either not well understood or imprecisely

explained, ,
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The purpose of this paper is to give a self-contained exposition
of some important facets of linear system theory which goes beyond what
is presently available in the literature. Specifically, our concern is
with the class of dynamical systems which are governed by a set of linear
ordinary differential equations of finite order in the state variables.
New results (see [3]) are presented in the theory of controllability,
observability, and canonical decomposition of such systems. These re=-
sults are used in a detailed study of the relation of the state~variable
representation of a system to certain well known types of time-~domain

input-output representations.

2. The Primary Representation.

2.1, Definition of a system.

For completeness, we give an axiomatic definition of a system to

which all representations can be related. The system of axioms we shall
adopt is & modified version of that previously stated in [1]. The purpose
of these axioms is to motivate to some extent the concept of the state.
We shall not be concerned, however, with a technical analysis of these
axioms, and will restrict all future considerations to the analysis of
the "state-variable" differential equation (2.1). In short, the axioms
now to be stated will serve as motivation for taking the differential

equation (2.1) as the primary representation of a system.

DEFINITION 1. By a dynamical system we shall mean a mathematical

structure described by the following axioms:

(i) There is given an abstract space, X, called the state space
and a set 2 of values of time at which the behavior of the system is
defined. < is an ordered subset of the real numbers, with the usual
ordering > [or <]. If tl’ to € 7, the statement tl >'tO [or
tl < to] will mean that tl is in the future [or in the East] with respect
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O)
pect to t

to t_; equivalently, t_  is in the past [or in the future] with res-
l.
(ii) There is given an abstract space  of functions of time

u: 7 = UL (where [ is a Euclidean space) which represent the admis-
sible inputs to the system.

(iii) For any initial time t € 02/, any initial state x ¢ Z, and
any input ue Q defined for t 271 [or t =7], states at other values

of time of the system are determined by a given transition function

P: QX T x 7Txzo %, which is written as cpu(t; T, x). This function
has the following properties:

(a) cpu('r;'r, x) = x for any ue Q, te7, xe =

(v) cpu(t,- T, x) is defined only when t 2zt [or t scTl.

(c) cpu(tE" to: x) = CPu(‘t2; tl’ q)u(tl*: tO’ x)) for all ue Q
all t_, %, t, in 7 suwh that t, st st [or

< <
t, =t = to], and all x € X

(4) I Ure ] denotes the equivalence class of functions
2

v € q whose values agree with u on the set [t, t1n 2,
then

¢ (t; 7, x) =9 (t; 7, x).
u u[T, ]
(iv) Every output of the systemat time t 1is given by the value of
a real function V: 7 X & —»R; where V¥ belongs to a given class Y.Jr

(v) The functions ¢ and VY are continuous with respect to suit-
able topologies defined on I, 07 , i, and the reals, as well as the in-
duced product topologies.

¥ A more general approach would be to make the output depend on the input

as well as the state. The corresponding extension of all results in this
paper to hold for this case is straightforward.
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It is understood that the preceding axioms define a mathematical
structure, not a physical system. It is found, however, that the be-
havior of complex interconnected objects obeying the laws of classical
physics can usually be described in terms of these axioms. By a "system"
we shall always mean a dynamical system in the sense of Definition 1.

The modification of the axiom system in Definition 1 from that in reference
[1] consists in allowing explicit consideration of the two opposite order-
ings of the set ojf o The repercussions of this seemingly minor point

turns out to be of significance, as will be seen shortly.

From now on we shall restrict attention to a special class of systems

which are:
(i) finite-dimensional (Z = finite-dimensional)

(ii) continuous-time (OZ’= real line and ¢, ¥ = smooth

real functions of 1t)

(iii) 1linear (¥ is linear in x and @ is linear jointly
in x and u)
(iv) multi-input, multi-output ( WL is p dimensional,
Y has r elements).
Under these special assumptions, it can be proved [4] that the transition

function of the most general dynamical system which satisfies the above

axioms is a solution of the vector differential equation:

F(t)x + G(t)u(t)

dx/dt
(2.1)

y(t) = H(t)x(t)

where




Sa

x = state vector (real n-vector)

oui;pu.tdr (real r-vector)

<

~~
o+

N
"

input* (real p-vector)

[
~~

ct
~—

it

b
~
ct
S
[}

n X n real matrix
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real r X n matrix

. (- ] *
and, for convenience, F(+), G(+), H(+), are C functions of t.

We shall call (2.1) the state-variable differential equation.

2.2. Solution of the State-Variable Differential Equation.

Given the initial condition x(to) =x_, it is well known 51

that the solution of (2.1) is uniquely defined and is given by

t
(2.2) x(t) = X(E)X™ (6 )x, + [ X(6)X™()6(v)u()ar,
t

o

where X(+) is a fundamental matrix solution [5] of the homogeneous equa-

tion
(2.3) dx/dt = F(t)x,
i.e.,
%% = F(¢)X, det x(to) #£ 0.

*®
For many arguments Cn or even ¢® is sufficient

From now on, unless otherwise specified, the word "input" denotes "vector
input" and the word "output" denotes "vector output".
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To place (2.2) in direct correspondence with our axioms, we write

(2.2) in terms of the transition matrix &(t, 7), which is defined by

(2.4) o(t, 7) = X(t)[X(T)]-l.

This definition is equivalent to stating that ¢ satisfies the relations

de/at = F(t)e, o(t_, t,) = I.

Then (2.2) becomes

t
(2.5) x(t) = o(t, to)xo + [ o(t, 7)&(t)u(r)dr,
t

0

and y(t) is then given explicitly as

t
(2.6) y(t) = H(t)o(t, t )x  + [ H(t)e(t, 1)6(r)u(r)dr.

t
o

It is easy to verify that the function ¢ defined by

(2.7) @ (t; t_, x_) = x(t)

where x(t) is given by (2.5), satisfies axiom (iii). The remaining

axioms are also easy to verify.

It is important to remark that the function ¢ defined above not
only satisfies axiom (iii) but has the additional property of being defined
for all t, to, not merely t = to or t = to. Since ¢ can be regarded
as a properly defined transition function with either ordering in time, it
is clear that specification of the ordering is an essential point in inter-

preting a differential equation as a dynamical system.
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2.3. C-Systems and A-Systems.

If the time is ordered in the usual physical way, (> in Def. 1)
then axiom (iii-d) follows from what is usually called the Principle of
Causality: the future has no effect on the present or past. More pre-
cisely, we shall say

DEFINITION 2. A causal (C-) system is characterized by the
property that the behavior of the system at any time to is completely

determined by events in the past and present, i.e., at t = to.

DEFINITION 3. An anticausal (é—) system is characterized by the
property that the behavior of the system at time to is completely

determined by events in the present and future, i.e., at t 2 to.
In view of the axioms given above, we may say that

(i) In a C-system the state at time t, summarizes the present

and the past history of the system.

(ii) 1In an A-system, the state at time t, summarizes the pre-

sent and the future history of the system.

Whether a given system is of type C or A depends solely on the
ordering of the set ;?7. As was seen above, by merely writing down
the differential equations of the system no choice of the time ordering
is implied; this ordering must always be specified separately.* It is
not even obvious at present whether or not there is a natural direction

of the flow of time in the physical world [6].

Fig. 1 gives a graphical illustration of the interpretation of a

differential equation (2.1) as a C or A system.

In writing down formula (2.5), it is often tacitly assumed that t >t .
This means a particular ordering has been chosen. But the formula is
invariant with respect to interchanging t and t,, which shows that the
adopted ordering is arbitrary and not a property of the differential equa-
tion.
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One might conceive of a system which is noncausal, i.e.,
neither of type C nor A. An example which is frequently quoted is that
of the ideal low pass filter [2] whose behavior at any given time depends
on both past and future stimuli. An ideal low-pass filter is not a dyna-
mical system in the sense of Definition 1. It is not at all illogical
for some "frequency-response" functions to not define a dynamical system.
After all, some characteristic functions (namely those whose inverse
Fourier transform has negative values) do not define probability density
functions, and therefore such "characteristic" functions have nothing to

do with random variables!

The signficance of the role played by noncausal systems in system
theory is not presently well established. For this reason, we make no

further references to such systems in this paper.

2.4, Controllability and Observability.

The concepts mentioned in the title have come to play an important
role in the development of system theory, especially in the theory of
control systems (see reference [1]). Our purpose here is to define these

concepts and show how they relate to system structure.

It is interesting to note that there are two nmatural ways of look-
ing at each concept [3] although the past literature has been mainly con-
cerned with only one of these ways. The choice made between them will, in
general, depend on the type of information sought. The definitions are
as follows.

Assume a given ordering of the set T . Then

DEFINITION 4. Consider a system (2.1).

(i) The couple (xo, to) (hereafter referred to as a "phase"
of the system) is said to be causal (C-) controllable [or anticausal
(A-) controllable] if there exists some finite t >t [or t 1 < to]

and some input u[to, t]_] [or u[t-l’ to]] which transfers (xo, to) to
(0, t,) [or (xo, t) to (0, t_l)].
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(ii) A phase which is both C-controllable and A-controllable
is bidirectionally (B-) controllable.

(iii) If every phase (x, to) is C- [or A~ or B-] controllable
VW x € 5, then the system is C- [or A- or B-] controllable at t .

(iv) If every phase is C- [or A~ or B-] controllable, the system
is completely C- [or A~ or B-] controllable.

(v) If the control intervals in (i) above can be made arbit-

*
rarily small, we speak of differential controllability over those intervals,

DEFINITION 5. Consider a system (2.1). Assume u(t) = O,

(i) The system is causal (C-) observable [or anticausal
~) observable] at time i state o system at time can
A-) ob ble] at ti t, if the state of the t tt Ty

be identified from knowled-g-g of the system's output over a finite interval
(t, to] (or [to, tl).

(i1) A system which is both C-observable and A-observable at

t, 1is bidirectionally [B-] observable at t .

—

(iii) If the system is C- [or A- or B-] observable at every
t e LZ', it is completely C- [or A~ or B-] observable.

(iv) If the intervals of output cbservation mentioned in (i) can

be made arbitrarily small, we speak of differentisl observability over

those intervals.,

Notes on the definition of observability:

1. Intuitively, there appears to be a connection between
differential observability at a point to and the ability to
identify a state from a finite number of derivatives of the
output at to. In a later section, this intuitive connection

is made explicit.

¥

Differential controllability is a concept introduced by LaSalle [7], who
called it "complete controllability". Since then, it has become more
common to use "complete controllability" in the manner employed here.
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2. The motivation for the appelatives of '"causal" and
anticausal" in the definition of observability is as follows.
In a system which is A-observable at the "present" instant,
one cannot identify the "present" state without knowledge of
future inputs. It may seem that there exist identification
procedures for "physical' systems which are based on our
"anticausal" observability property [8]. However, in such
cases, the principle of causality imposes a built-in delay
into the procedure so that in fact it is not the "present"
state which can be identified, but only a "past" state.

2.5. Controllability and Observability of the System (2.1).

In this section, we give necessary and sufficient conditions for

the system (2.1) to possess certain controllability and observability

properties. We begin with

THEOREM 1. The system (2,1) is C-controllable at t, if and

only if there exists t, > to such that the rows of the matrix

Q(to, +)G(+) are linearly independent functions over the interval

1

Proof. (Sufficiency): If the rows of @(to, «)G(+) are linearly

independent functions on [t , t;1, the matrix

where the "prime" indicates transpose, is positive definite.

ting

t
tl) = [tl ®(to, t)G(t)G'(t)@'(to, t)dt

o}

c(to,

u(t) = - G'(t)@'(to, t)c‘l(to, tl)xo

in (2.5), we obtain x(tl) = 0.

[to, t

Then, set-

1

1.




w]l]le

(Necessity): If there is no t, >t_ such that the rows of

1
@(to, *)a(*) are linearly independent functions on [t , tl], then

there is a vector xq in the state space such that

1 =
xld)(to, t)G(t) =0 forall t >t .

From (2.5),

t
x:’LQ)(tO, t)x(t) = x]x o+ x] ft @(to, 7)G(7)u(t)dr
e}
— 3
= Xlxo.

Clearly, the component of x in the direction of Xy is uncontrollable

for t > to since the term involving u is zero. But the system was

assuned to be C~controllable at to. Hence we have a contradiction. Q.E.D.

THEOREM 2, The system (2.1) is A-controllable at t, if and

only if there exists t 1 < to such that the rows of the matrix

®(to, *)G(+) are linearly independent functions on the interval [t

-1’ to]'

Proof. Same as for Theorem 1 with t, replaced by t_, and "
replaced by "<".

THEOREM 3. The system (2.1) is C-observable at t, if and only
if there exists t_, <t_ such that the columns of the matrix H(-)o(", to)
to].

are linearly independent functions over the interval [t

-1’

Proof. (Sufficiency): Consider (2.1) with wu(+) = O. Then, from
(2.1) and (2.5),

(2.8) y(6) = H(E)x(t) = B(B)o(t, t )x.
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Multiplying both sides by o'(%t, to)H'(t) and integrating over

['b_l, to] yields
to to
[ o'(t, to)H’(t)y(t)dt = [ o' t, tO)H'(t)H(t)¢(t, to)dt X,
t t
-1 -1
= D(to, t_l)xo
where
t0
(2.9) Dltg, 1) = [ B8, b)) [a(E)a(s, bo)]'as.
-1

Clearly, x_  1is identifiable from knowledge of y(*) over [t 17 to]
if D is nonsingular., The nonsingularity of D follows from (2.9) if
the columns of H(-)o(-, to) are linearly independent functions on

(6_ys b, 10

(Necessity): If there is no t . < to such that the columns of

1

H(e)o(-, to) are linearly independent functions on [t to], then from

-1?
(2.8), there exists x  such that y(t) =0 for t = t . The system is
then not C~observable at to’ and we have a contradiction. Q.E.D.

THEOREM L. The system (2.1) is A-observable at +t_ =~ if and only if

there exists t; >t  such that the columns of the matrix H(-)o(-, to) are

linearly independent functions on [t _, tl].

Proof. Same as for Theorem 2 with t replaced by t, and "t

1
replaced by ">,

As immediate consequences of Theorems 1, 2 and 3, 4 respectively,

we have
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*
COROLLARY 1. A system (2.1) is differentially controllable
on an interval I if and only if the rows of the matrix d)(to, )a(+)

are linearly independent functions on every subinterval of I.

COROLIARY 2. A system (2.1) is differentially observable on
an interval I if and only if the columns of the matrix H(+)o(*, to)

are linearly independent functions on every subinterval of I.

In turn, Corollaries 1, 2 give us (see [3])

THEOREM 5. A system (2.1) is differentially controllable on an
interval I if and only if the rows of the matrix ®(t_, °)G(+) are

linearly independent functions over a subinterval of I and, in addition,

there exists a vector linear differential equation, defined on I and

having no singularities on I, for which the rows of the matrix
o(t

o0 *)G(*) are solutions.

THEOREM 6. A system (2.1) with wu(t) = 0 is differentially

observable on an interval I if and only if the columns of the matrix

H(*)o(., to) are linearly independent over a subinterval of I and in

addition there exists a vector linear differential equation, defined on

I and having no singularities on I, for which the columns of the

matrix H(*)o(-, to) are solutions.

Proof of Theorem 5. (Sufficiency): ILet G'(-)Q'(to, *) Dbe the
transpose of <I>(to, +)G(-). Suppose the columns of (R;} of G’(-)@‘(to, )

are solutions of the differential equation

(2.11) gAi(t)v(i) =0
i=1

*
This result was originally proved by LaSalle [7]. In his terminology,

a differentially controllable system is a "proper" system.
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(1) av

defined on I, where v is a p-vector, Vv = =, and Ai(o) is
dt
a p X p mtrix of suitably differentiable time functions with

det An(t) % 0 \/t € I. There will be nep linearly independent vector
solutions of (2.11) Vs eees Vpp It is easy to show that (2.11) can
also be written as a set of nep first-order vector equations whose

solutions correspond to the [vi}. A fundamental matrix for the latter

set of equations is given by

vy c eV, Vo c -t Ve
1 1 1
vl(l) ... Vn( ) Vnil) . . . vnfp)
(2.12) ) : ) : :
vl(p—l) . .. vn(p_l) vﬁfil) « o . vé?;l)

Now, a subset of the [vi} spans the linear manifold defined by the {Ri}.
Suppose we replace Vi, ..., Vv in (2.12) by Ry, «-+s R respectively,
and examine the determinant associated with the resulting solution matrix.
By a well-known theorem [5] if the determinant of a solution matrix of a
set of linear equations defined on an interval I vanishes anywhere on I,
it must vanish everywhere on I. Conversely, if the determinant is nonzero
at one point in I, it must be nonzero for all points in I. The former
case implies that two columns of the matrix (2.12) are linearly dependent
over 1. But the {vi) were presumed linearly independent, and by hypo-
thesis, the {Ri} are linearly independent over the interval 1I. There-

fore, the determinant associated with (2.12) with R,, ..., Rn replacing

l’
vl, ey vn is nonzero for all +t € I which implies that the {Ri} are
linearly independent functions over every subinterval of I. Application

of Corollary 1 completes this part of the proof.
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(Necessity): If the system (2.1) is differentially controllable
on I, then by Corollary 1 the {Ri} must be linearly independent on
every subinterval of I, By an easy extension of the argument for the scalar
case, one has the following result from the theory of differential equations

[5]. Given a set of p-vectors Vl('), ceay V 'P(.) which are linearly

n
independent functions on every subinterval of a given interval I, so that
the deteminant associated with (2.12) vanishes nowhere on I. Then the
{vi} satisfy a linear homogeneous differential equation, defined on I

and with no singularities on I, which is given implicitly by

F_Vl o o o Vn.p v B

GO IRC J )
(2.13) det : . =0

V1(:9) L. vnfg) +(P)

where v is the dependent variable (a p-vector). We now merely associate

the {Ri} with n members of the {vi} and the theorem is proved. Q.E.D.

Theorem 6 is proved by strict analogy.

2.6. The Canonical Structure of a Linear Dynamical System.

It is known [9], [10], that one can use the concepts of (C-) con-
trollability and (C-) observability to form a direct sum decomposition of
the state space of a system (2.1). The fact that two types of controllabi-
lity and observability can be defined leads to an immediate extension of

previous results [3]. We now give
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THEOREM 7. (i) Consider a linear dynamical system (2.1).

For a given ordering of the set "’Z, and at_every fixed instant t of

time, there is a coordinate system in the state space relative to which

the components of the state vector can be decomposed in any one of four

ways into a direct sum of four parts

x=xa@xb®xc@xd,

which correspond respectively to the schemes I through IV below.

"Part (a): C-controllable but C-unobservable
I ) Part (b): C-controllable and C-observable

Part (c): C-uncontrollable and C-unobservable

Part (d): C-uncontrollable but C-observable,

"Part (a): A-controllable but A-unobservable
IT Part (b): A-controllable and A-observable

Part (c): A-uncontrollable and A-unobservable

Part (d): A-uncontrollable but A-observable.

Part (a): C-controllable but A-unobservable.
ITT Part (b): A-controllable and C-observable

Part (c): A-uncontrollable and C-unobservable

Part (d): A-uncontrollable but C-observable.

Part (a): A-controllable but C-unobservable
v Part (b): A-controllable and C-observable

Part (c): A-uncontrollable and C-unobservable

Part (d): A-uncontrollable but C-observable.




=17~

(ii) Relative to such a choice of coordinates, and for any

type of decomposition the system matrices have the canonical form

- _
o) PPr) () )
0 FPO(t) 0 Fo(¢)
(2.14) F(t) = .
0 0 FOO(t)  FOY(x)
0 0 0 74 (1)
G(t) = col(@®(t), G°(t), O, 0)

H(t) = (0, H(t), 0, BI(%)).

It

The development of the statements contained in Theorem 7 follow in parallel
fashion the development given in [1] in which only the type I decomposition
was discussed. Figure 2 gives a graphical picture of the canonical struc-

ture for a type I, II, III or IV decomposition

Let na(t), nb(t), np(t), nd(t) be the dimension numbers for
parts a, b, ¢, d respectively of a given type of decomposition for a system

(2.1). The dimension, n, of the state space of (2.1) is then given by
(2.15) no=n (8) +n(t) +n (t) +n(s) V.

Although (2,15) holds for any type of decomposition, in the general
time ~varying case +the dimension numbers (at any given value of t) for
ore type of decomposition need not coincide with those of another type.

It can be shown, however, that the dimension numbers for all of the above

decompositions are constants if (2,1) is periodic or analytic.
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To illustrate the significance of a dimension number being con-
stant, suppose na(t) is constant for a given type of decomposition
of (2.1). Then part (a) of the associated decomposition is a subsystem
of (2.1). 1If the decomposition is of type II, then this subsystem is
A-controllable but A-unobservablie for all +.

In a later section, we shall investigate the conditions under
which the "b" part of a given decomposition has constant dimension. This
problem is connected with the study of the relationship between state-

variable and input-output system representations.

3. System Representation by Input-output Relations

In this section we explore one type of input-output representation
of linear systems. Specifically, we shall rclate certain properties of
the latter to properties normalily associated with the internal structure

of a systen.

3.1. Definition of Weighting Pattern.

DEFINITION 6. The weighting pattern.r W(t, 7) for the dynamical
system (2.1) is defined by the relation

t
(3.1) y(t) - H(t)o(t, to)xo = ft w(t, T)u(t)dr.

o]
That is, knowing the state of a C-system [or A-system] at any value
to of time, as well as the input over an interval [to, tl] for the in-

terval [t to]] enables one to establish by means of the (r X p matrix)

-1’

weighting pattern, the output of the system at time +t [or t l]. From

1
(5.1%(2.6Land(2.h) we have, in view of the uniqueness of solutions of the

differential equation (2.1),

T This terminology is due to Prof. W. H. Huggins. Unless otherwise speci-

fied, the term "weighting pattern" implies "weighting pattern matrix".
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(3.2) W(t, 7) = H(t)o(t, t)a(r) = €H(t)x(t)[X(v)17a(r) V¢, 7.

If the initial state is 0O (3.1) becomes

t
(3.3) y(t) = J w(t, t)u(v)ar.

o
Hence, for zero initial conditiors, the weighting pattern contains all
the information needed to completely describe the input-output relation

of the system (2.1).

Since (2.1) can represent either a C-system of an A-system, it
is clear that the weighting pattern must also be independent of the order-
ing of ‘}Zf.

As is well known, one can formally identify the ith column of
wt, v) (i.e., Wi(t, 7)) as the "output" of the system (2.1) at time
t corresponding to an "input" all of whose components are zero except
the ith which is a unit impulse applied at time T (assuming that at
time T +the state of the system is the origin). The formal derivetion of

this result is as follows. In (2.6) let x, =0 and

w(e) = o 1) [(£), Te [t tl.
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Then

t
(3.4) y(t, 7) = ft H(t)o(t, £)G(&)u (&)dE

(o]

t
= ft H(t)o(t, £)G;(8)d(E - 7)dt

o

where G, is the 1% cotumn of G By the well known "sifting" property

of the d~function,

Y(t) T)

H(t)o(t, T)Gi('r),

Wi(t, T).

The weighting pattern (matrix) is therefore often referred to as

the impulse response (matrix) of the system.*

3.2, Causal and Anticausal Impulse Responses.

A causal system can be described by stating that there is
no response prior to an excitation. This leads to the requirement that
the impulse response function vanish for T >t. In like manner the im-
pulse response function for an anticausal system must vanish for T <+t.

We now give the following definitions.

DEFINITION 7. The causal impulse response (g-impulse response )

of the dynamical system (2.1) is given by

WC(t, T) = W(t, t) if t =z,

=0 if t <rT.

¥ From now on, the word "matrix" will be understood when "impulse responses"
are discussed.
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DEFINITION 8. The anticausal (A-) impulse response of the dyna-
mical system (2.1) is given by

0 ; if t >rT.

(3'6) WA(t) T) =
wW(t, ), if t =T,

In view of definition 7, for a causal system we can always write
(3.1) in the form

(3.7) y(t) = H(t)o(t, t )x + f: W, (t, )u(v)ar,

For certain purposes (see [11]), it is convenient to write the
right hand side of (3.7) as a single integral

<o

(5.8) y(t>] Wolt, T)u(e)ar.

In order to do this, we must have

t
o]

(3.9) H(t)@(t, to)xo = [ Wc(t, 7)u(T)dr

00
for a suitable definition of the function u(*) on (-=, to). It follows
that we can always do this as long as the dimension number nd(t) for a
type III canonical decomposition is zero for all +t. (See Theorem 21.)

Similarly, for an anticausal system, we can always write
oo
yv(t) = [ WA(t, 7)u(t )ar
=00

as long as the dimension number nd(t) for a type II canonical decomposi-

tion is zero for all t.
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3.3, Weighting Patterns and Realizations.

Suppose we are given a matrix function of two variables t, T and
we regard this function as a weighting pattern W, or impulse response
W, or W,. In order to relate such an abstractly given weighting pattern

C A
to a dynamical system, we introduce

DEFINITION 9. A dynamical system (2.1) is a local realization of

W [or W, or WA] on an interval I whenever (3.2) [or (3.2 and 3.5)
or (3,2) and 3.6)] holds on I. If the aforementioned relation holds for
all I, the realization is global.

The term "realization" is motivated by the fact that it is possible
to build real (physical) systems (analog computers, etc.) which obey (2.1)

to any desired degree of accuracy.

We now give the following result which is stated for global realiza-

tions but which has an obvious counterpart for local realizations.

THEOREM 8. A function of two variables, W, is a weighting pattern

realizable by means of a dynamical system (2.1) if and only if there exist

two matrix functions of time V¥(*) and ©(+) defined over == <t <

such that for all t, T we have

(3.10) W(t, ) = ¥(t)e(t).
Proof. If condition (3.10) holds, then the system defined by

(3.11) F(t) =0, &(t) =0(t), H(t) = ¥(t)

is a realization of W. On the other hand, the condition is surely neces-

sary since from (3.2) we have, for any fixed to,
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(5.12) Wik, ©) = H(8)e(s, 5 )0(t , T)G(r)

so that we may set

I

¥(t) = H(t)e(t, to)

(3.13)

8(t)

1

(I)(to) T’)G(t’) . QCE'D.

Suppose now that ¥(+) and ©(¢) are functions as in Theorem 8

and consider the C-impulse response defined by

Wo(t, 7) = ¥(t)8(z), b=,

(3.14)
=0 s, T <7,

Then Theorem 8 shows that the function

it

z(t, 1) = 0, t >

v(t)e(t), t s+

is identical with the A-~impulse response associated with the realization
(3.11). Moreover, if W, is the C-impulse response of a dynamical system
(2.1), then the realization (3%.14) is an immediate consequence of Theorem 8

and relation (3.5). Thus, we have

COROIIARY TO THEOREM 8. A C-impulse response is realizable by
means of a dynamical system (2.1) if and only if relation (3.14) holds.
An analogous result holds for the A-impulse response.

Now consider
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DEFINITION 10. The weighting pattern W in (3.10) is in reduced
form if the columns of ¥(+) and the rows of ©(+) are both linearly

independent sets of functions on the real line. Otherwise W is reducible.

DEFINITION 11, If W in (3.10) is in reduced form, the number

of columns of ¥ (= number of rows of ©) is called the order of W.

DEFINITION 12. A global realization (2.1) of W in (3.10) is in
reduced form if the dimension of the state space is the same as the order
of W.

We now have

THECREM 9. A reduced form realization (2.1) of a given weighting

pattern (3.10) always exists.

Proof. If W in (3.10) is in reduced form, then the realization

%(t)

y(t)

e(t)u(t)

¥(t)x(t)

obviously has a state space dimension equal to the number of rows of 6,
Hence to prove the theorem, we need to show that any weighing pattern can
be put into reduced form. To do this, consider an r X p reducible weight-

ing pattern

(3.15) W(t, 1) = a(t)p(r)

in which o(*) is r X (n+tq), PB(*) is (n+g) X p and the row rank of
B(*) is n. Without loss of generality, assume the first q rows of

B to be linearly dependent on the remaining n rows, Then, by perform-
ing elementary row operations on B [12] one can construct a transformation

whose insertion into the expression (3.15) allows the latter to be written as
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(3.16) W(t, T) = a(t)B(r)

where the first g rows of B, name 1y [/Bq], are Q. It then follows
that the first q columns {&q} of & are superfluous, and if we

N A A { }
partition o and B into [{aq} [A1 and [—E%-] respectively, then

(3.17) w(t, 7) = A(t)B(7).

If the columns of A(e) are linearly independent on the real line, then
(3.17) is in reduced form. If, on the other hand, the column rank of
A(s) is s <n, we can perform elementary column operations on A(s)
and from this construct a linear transformation which would enable us to
write (3.17) in the form

W(t, 7) = A(t)B(t)

where n-s columns of A(e) are 0 thus rendering n-s rows of B()
superfluous. By strict analogy with the the previous "partitioning"

argument, we finally end up with
w(t, 7) = ¥(t)e(r)

where the s columns of ¥(*) and s rows of ©(+) are linearly inde-

pendent functions on the real line. Q.E.D.

THEOREM 10. (i) A global reduced~form realization (2.1) of a
given reduced-form weighting pattern (3.10) has the lowest dimension of

all global realizations, and (ii) conversely, all minimum-dimension realiza-

tions (2.1) of a reduced-form weighting pattern (3.10) are in reduced form.
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Proof. (i) Iet n be the order of the weighting pattern and
assume there exists a realization (2.1) whose state space is of lower
dimension than n. Then the number of rows @(to, «)G(+) must be less
than n and hence the order of the reduced form weighting pattern for

this system is also less than n, which is a contradiction.

(ii) Suppose there is a minimum-dimension realization which is
not in reduced form. Upon reduction, its dimension must be less than n,

which contradicts the minimality of n. Q.E.D,

3, Uniqueness of the Realization.

A realization of W, even if in reduced form, is never unique
for the following reason. According to the axiomatic definition of a
system, the state is always an abstract quantity. Therefore replacing
a given set of state variables by another equivalent set must clearly
not affect input-output relations. It is easy to verify this general

fact in the present case.

Iet T(t), ~0 <t <w, bea family of nonsingular linear trans-
formations such that the function T(+) is continuously differentiable.
Then we can set up & diffeomorphism (i.e., a 1 x 1 bidifferentiable

correspondence) between £ X & and ' J X 3 by writing

(3.18) £, %) = (¢, T(t)x).

Then the matrices F(t), G(t), H(t) in (2.1) are to be replaced respec-

tively by
B(t) = 26)T"Le) + T(8)P(s)T (%)
G(t) = T(t)a(t)
fi(t) = TN (6)H(t).
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B(t, ©) = T(t)o(t, T)T (1),
If W 1is the weighting pattern associated with ﬁ, @, ﬁ, then

(s, 1) = 8(6)0(t, 7)8(r)

[H(E)T™5 ()] - [T(t)e(t, )T~ ()] - [r(r)e(x)]

H(t)o(t, T)G(T)

]

w(t, 1).

Thus in any case a realization of W is unique only up to a diffeomorphism

(3.15). 1In fact, it can be shown that any two reduced form realizations

of a given weighting pattern must be related by such a diffeomorphism [13].

3.5. Weighting Patterns and the Concepts of Controllability and

Observability.

In this section, we explore the controllability and observability
properties of global reduced-form realizations of weighting patterns. The
results obtained will allow us to obtain a specific link between the weight-
ing pattern of a system and the system's canonical structure. For this
purpose, it will be convenient to list certain appropriate properties of
weighting patterns and relate these properties to the concepts of controll~
ability and observability.

We assume first, without loss of generality, that in all weighting
patterns (3.10), the colums of ¥(+) and rows of ©(s) are linearly in-
dependent functions on the entire real line (i.e., the weighting patterns
are in reduced form when the entire t, T plane is considered). Now con~

sider the following possible properties of these weighting patterns.
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Pl. The rows of ©(*) are linearly independent functions on every in-
terval of the real line.
P2. Same as Pl with "rows of @" replaced by "columns of ¥".

P53, The rows of ©(*) are linearly independent functions on every semi-

infinite interval with +w as end point.

Ph., Same as P3 with "rows of ©" replaced by "columns of Y¥".
P5. Seme as P3 with "+»o" replaced by "-x".

P6 1 1" P)"‘ 1" 11 11 " 1"

. (z_a._) There exists an isolated, minimum length finite interval

I = [a, b], the closest such interval to +w, such that the rows of ©(-)
are linearly independent functions over it.

P7. (b) same as P7(a) except I is an e€-interval (b7, bl.

P8. a, b. Same as PT a, b respectively except "+4" is replaced by

"o" and "(b~, bl]" is replaced by "[a, a+)".

P9. (a) There exists an isolated, minimum length finite interval I
I = [c, da], the closest such interval to +w, such that the columns of

¥(+) are linearly independent functions over it.
P9. (b) Same as P9(a) except I is an e-interval (4, dl.

P.10. a, b. Same as P9a, b respectively except "+4w" is replaced by
- +
"o, and "(d7, 41" is replaced by "[c, ¢ )".

Applications of Theorems 1-6 to P1-P10 yields the following state-
ments in the form of a theorem about the reduced form realizations of the

associated weighting patterns.

THEOREM 11. Given a weighting pattern (3.10) and a corresponding

reduced-form realization (3.1). Then




(1)

(11)
(iii)
(iv)

(v)

(vi)
(vii)(a)
(vii)(b)

(viii)(a)

(viii) (o)

(1x)(a)

(1x) (b)

(x)(a)

(x) (p)
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Pl <==> the system is differentially controllable \Vt
P2 <==> " " " Qifferentially observable  \'t
P3 <==> " " " G.controllable Vit
Ph <==> " " " A-observable \“t
P5 <==> " " " a_controllable V¢
P6 <==> " " " C-observable \V/t
P7(a) => " " " C-controllable Vit <a

(<== if, in addition, the system is not Cwcontrollable
for any t > a)

Ssame as (vii)(a) except a"» "Wt < 1", and

mo>at L Mg > pS

1 vtg

P8(a) ==> the system is A-controllable \‘/ t 20b
(<== if, in addition, the system is not A-controllable
for any t < b)

same as (viii)(a) except "'t 2 p"- "Wt >a", and

<"t <al,

Pfa; ==> the system is A-observable \/t 2 c
(<== if, in addition, the system is not A-observable

for any t >ec)

" Wy g
Same as (ix)(a) except \V/t = ">Vt <a", and
Ilt > d_".

"_t > c"

-

P10(a) ==> the system is C-observable Vt 2 4

(<== if, in addition, the system is not C-observable

for any t < 4d)

same as (x)(a) except "\t z d"- "\t >c", and
"t <d" 5 "<,

The arrow "

n

- denotes the phrase "is replaced by".
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Now consider

THEOREM 12. Given a system (2.1) with a canonical decomposi-
tion (2.1k4) of type I, II, III, or IV. Then for any chosen type, if

the dimension of the simultaneously controllable and observable part

of the decomposition is constant (so that this part is a subsystem),

the weighting pattern of the system, W(t, 7), is given by

(3.19) W(t, 1) = HO(+)e0(s, ©)c°(x)

bb
where @bb is the transition matrix corresponding to F ~. Moreover,

the "b" part of the given canonical decomposition is a reduced form

realization of the weighting pattern.

Proof. The first part of the theorem follows from formula (3.12)
with substitution of (2.14). To prove the second part of the theorem,
assume that the "b" part of the appropriate type canonical decomposition
is not a reduced form realization of the system's weighting pattern. 1In
that case, if n is the order of W, the realization of part (b) must be of
higher dimension than n, which means that either the columns of
Hb(-)ébb(-, to) or the rows of @bb(to, ')Gb(') are linearly dependent
functions on the real line. But from Theorems 1-4, this means that the
realization cannot be simultaneously controllable and observable (using
the appropriate definitions corresponding to the given type of decomposition)

which is a contradiction. Q.E.D.
We now ask two questions:

(1) What properties of a weighting pattern imply that a given
realization can have a canonical decomposition of a specified type in
which the simultaneocusly controllable and observable part has constant

dimension?
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(ii) Conversely, if we know that one or more specified type
canonical decompositions of a given system have a "b" part which is

of constant dimension, what does this imply about the weighting pattern?

An answer to these questions is provided by table I and the
coanment which follows it. The right hand column gives the possible sets
of the different types of canonical decompositions of a system in which
the dimension of the simultaneously controllable and observable part is
constant. The left hand column plus the comment below Table I indicate
the corresponding properties of the weighting pattern.

TABLE I

WEIGHTING PATTERN TYPE OF DECOMPOSITION
PROPERTIES FOR WHICH n, IS CONSTANT

Pl, P2 I, I, III, IV

Pl, Ph II, IIT

Pl, P6 I, IV

P2, P3 I, III

P2, P5 II, IV

P3, Pk III .

F3, P6 I

P4, P5 II

P5, P6 v

Completion of table I 1s accomplished by noting that the right
hand column is unchanged if, in the left hand column, we make the substi-

tutions
P - P_ +P
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From Theorem 12 and table I we obtain (see [3])

COROLIARY to THEOREM 12, A reduced-form realization of a weight~
ing pattern having one or more of the sets of properties listed in

table I must have one or more of the properties below.

( i) Complete C=controllability and complete C-observability
(i1) complete A-controllability and complete A-observability
(1i1) complete C-controllability and complete A-observability

(iv) complete A-controllability and complete C~observability.

3.6. The Role of C and A Impulse Responses.

In the previous section, we discussed the relationship of the
weighting pattern of a system to the canonical decompositions of the system.
Similar (though more restricted) results can be obtained in terms of the
C and A impulse responses of the system. An important result, implied by
Theorem 11, is given by

THEOREM 13. Consider a reduced~form weighting pattern (3.10),

and a corresponding reduced-form realization (2.1).

(1) The intersection of the intervals (in ¢ ) of C-controll-
ability and C-observability of (2.1) can be determined from the A-impulse
response of the system.

(ii) The intersection of the intervals (in &) of A-controll-
ability and A-observability of (2.1) can be determined from the C-impulse

response of the system,
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Proof. (i) If the intersection in (i) above is not empty,
Theorem 13 implies that for every +t-interval It on which the columns
of ¥(+) 1in (3.10) are linearly independent functions, there exists a
T-interval I, such that 7 >%, Yre I, Yte I, on which the
@(-) are linearly independent functions. The first part of the theorem
then follows from the fact that the A-impulse response WA(t, T) essen-
tially coincides with the weighting pattern W(t, ©) for t = 7.

(ii) Same as above with ¥ and @ interchanged, t+ and T
interchanged, and A-impulse response replaced by C-impulse response, Q.E.D.

In general, the C- (A-) impulse response yields no information
about intervals of simultaneous C- (A~) controllability and C- (A=)
observability. In special cases, however, complete information is obtain-
able. It is clear, for example, that if the respective "b" parts of a
type I and type II canonical decomposition of a system are identical (so
that all four decompositions have identical "b" parts), then Theorem 12
can be stated in terms of C- or A-impulse responses as well as in terms
of the weighting pattern. Hence, an essential hypothesis for the result
stated by Kalman [1], [9], linking {C-) impuise responses to the "b"
part of a (type I) canonical decomposition is that this "b" part is also
defined by a type II decomposition of the system (see [31).

To illustrate the above statements, consider the one-dimensional

system
= = g(t)u(t)

(3.18)
y(t) = h(t)x(t).
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Suppose g(*) and h(e) are defined as in Figure 3; i.e., they are
unity over one semi-infinite interval, zero over another, and make a
smooth transition between the levels o and 1. 1In addition their

supports are disjoint,
The reader can easily verify the following facts.
(i) The system (3.18) is completely C-controllable and
completely C-observable.

(ii) The system is nowhere simultaneously A-controllable

and A-~observable.
(iii) The C-impulse response of (3.18) is identically zero.

(iv) The A-impulse response WA(t, T) is non-zero if t <0
and T > Oo

If the roles played by the functions g(¢) and h(-) are re-

versed in (3.18), the above statements hold with "C" and "A" interchanged
and "t" and "t" interchanged.

4. Adjoint and Dual Systems.

Theorem 1-6 give ample evidence of the existence of a "duality
between the concepts of controllability and observability. The purpose
of this section is to give precise meaning to the preceding statement.
In order to do so, we define and discuss the concepts of adjoint and

dual systems.
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4,1, Definition of Adjoint Systems.

We give the definition indicated in the title and relate it to

the classical concept of the adjoint of a linear differential operator.

DEFINITION 13, Iet S TDbe a reduced-form linear differential
system (2.1) with weighting pattern W(t, T). Then the adjoint system

S*, with associated weighting pattern W¥(t, T), is defined by the
following properties,

(i) The systems S and S* have the same time set with

the same ordering.

(11) The product of the transposed transition matrix for S

with the transition matrix for S* is the identity.

(ii1) w*(t, T) = - W¥(T, 1)

where the "prime" denotes transpose.

DEFINITION 14. Two systems S and S* are input-output adjoints

of each other if properties (i) and {iii) of Definition 13 hold.

4.2, Relation to Classical Ad joint.

Consider the homogeneous n-dimensional vector differential equa-

tions
(k.1) % = F(t)x
(4.2) (—;‘% = - F'(t)x.

It is readily demonstrated [5] that the product of a fundamental matrix
solution of (L4.1) with the transpose of that for (4.2) is a constant matrix.
In fact, if &(t, T) is the transition matrix for (L4.1), then the transi-
l(t, 7). This essentially defines (4.1)
and (4.2) as being adjoint equations [5].

tion matrix for (4.2) 1s @'"
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Now suppose we add to (4.1) and (4.2) the respective r-dimensional
vector equations

(4.3) y(t) = H(t)x(t)

H(t)x(t)

1l

(h.b) y(t)

and proceed to eliminate the state variables in each case so that we
are left with homogeneous nth-order vector differential equations in

y and § respectively, as below

(4.5) L{y}

1l
O

I

(4.6) *{y} = O.

Then the operators I and L¥ must be formal adjoints of each other,

i.e., if

n ( ) di
L{*} = A (t) —. (-}
i=0 *  att

where the (Ai} are r X r matrices, then

n i di
I¥(«} = = (~1)" =, {A.(t)-}.
1=0 att

The equations (4.5, 6) are also called adjoint equations.

The adjoint equation to (4.5) arises naturally from another point
of view, namely, in the search for (vector) integrating factors for
(4.5). That is, every solution of the adjoint equation (4.6) is an inte-
grating factor for (4.5) and this fact provides the basis for the
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(vector forms of the) ILagrange identity and Green's formula (see

[51).

To connect the classical theory to Definition 13 we point out

the simple fact that in the case of zero input, the system, S and S*

in Definition 13 are adjoint in the classical sense.

The need for Def

tion 1k is shown by the following. Consider
two systems Sl’ 82 whose respective input-output relations can be

described by vector differential equations of the form

(&.7) Lyl =y
(4.8) Ly} = u,
where
dim y; = dim y,
dim u, = dim u,

and Ll is the formal adjoint of L2. If the time scale for Sl and

82 is the same, then it is readily shown that Sl and 82 are input-

output adjoints according to Definition 1k. Also, if U = U, = 0,

then (4.7, 8) are adjoint equations. However, because of the nonuniqueness
of realizations of input-output relations (see section 3.4), the systems
Sl and 82 may not be adjoint with respect to their state variables.
Hence, Definition 14 =£>Definition 13.

4,3, Definition of Dual Systems.

DEFINITION 15. Iet S 1be a system as in Definition 13. The dwal
systenm g, with associated weighting pattern ﬁ(t, T), 1is defined by
the following properties.
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(i) The time sets of S and S are the same but are
oppositely ordered.

(ii1) If we reverse the time ordering in S and take the pro-
duct of the transposed transition matrix of the resulting system with

the transition matrix of S, we obtain the identity.
(1i1) W(t, 7) = W' (7, t)

where the "prime" denotes transpose.

DEFINITION 16. Two systems S and § are input-output duals
of each other if properties (i) and (iii) of Definition 15 hold.

4,4, Differential Equation Representation of Adjoint and Dual
Systems.

We explicitly show in this section that the dual of a given

system is obtained from the adjoint by reversing the direction of time flow in
the latter.

THEOREM 14. Consider a reduced-form system S given by

(2.1). Then the adjoint system S* is given by

L e )R T R (8)A()
(4.9) F(t) = % et (t)%(t)

where U is the (r-dimensional) input and y is the (p-dimensional)

output.

Proof. (i) Iet &(t, T) be the transition matrix for (2.1);
let ®(t, 1) be likewise for (4.9). Then, since (2.1) and (k.9) are

real systems

B(t, 1) = o7 N(s, )
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and therefore ®*!(t, 7)8(t, 7) = I.

(ii) The weighting pattern of (2.1) is given by

W(t, 1) = - ¢'(£)8(t, T)H' (7).

Equation (4.9) is a realization of W and since (i) specifies the transi-
tion matrix, the realization is unique modulo a sign combination for u

and y as shown. Q.E.D.

THEOREM 15. Let S be a system as in Definition 13. Then the

dwml system § is given by

%2 = F'(s)z + H'(s)u(s)
(k.10)
sr(s) = G (S)Z(S)o

Proof. We need merely see whether Definition 15 is satisfied.

(1) The time sets of S and S are oppositely ordered by
hypothesis,

(ii) If we replace s by t and change the sign of the deri-
vative in (4.10), the result is essentially (4.9). Theorem 14 implies
that the product of the transposed transition matrix of (4.9) with the

transition matrix of (2.1) is the identity matrix.

(ii1) If (-, ) is the transition matrix function of (2.1),
then ¢'(+, *) is the transition matrix function of (4.10). The weighting
pattern W for (4.10) is then given by
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(4.11) W(s, T) = a'(s)e*(s, T)H' (7).
From (3.2) we see that

W(t, T) = Wi(T, t).
Q.E.D.

The proof of Theorem 15 provides the following

COROLIARY. The dual of a given system (2.1) is the adjoint

system with the time scale ordered in the opposite sense.

4,5. Dual Systems and Concepts of Controllability and Observa-
bility.

Our objective as stated at the beginning of section 4 is met by
presenting the following theorems.

THEOREM 16. Consider a system (2.1), with its associated adjoint
(4.9). If the system (2.1} is C[A] controllable (or C[A] observable) at
t =t then the adjoint system (k.9) is A[C] observable fr A[C] controll-
able) gt t = t.

Proof. The analogies involved are such that it is only necessary
to prove that C-controllability of (2.1) <==> A-observability of (L4.9).

If the system (2.1) is C-controllable at t = to’ then by Theorem 1
there exists t; >t such that the columns of the matrix G‘(-)Q‘(to, )
are linearly independent functions over the interval [to, tl]. But this
implies A-observability of (4.9) at to. The converse holds by reversibi-
lity of the argument. Q.E.D.




|

41—

THEOREM 17. Consider a system (2.1), with its associated dual
(4.10). If the system (2.1) is C[A] controllable (or C[A] observable)
at t =1, then the dual system (h9) is C[A] observable (or clal
controllable) at s = - t .

Proof. Follows from Theorem 16 plus the corollary to Theorem 15.

5. Time=Domain Input-Output Relations = The

Input-OQutput Differential Equation.

In section 3 we discussed the role of the weighting pattern in
the input-output representation of linear systems. In certain situa-
tions the natural specification of the input-output characteristics of
a system is via a differential equation. In this section we discuss
the relationship of input-output differential equations to other modes

of system representation.

5.1. Existence and Form.

THEOREM 18. Consider a system (2.1l). For a class of inputs U

whose components as sufficiently smooth, (2.1) implies the existence of

a differential equation relating output y to input ue U of the form

(5.1) Ly = Mu,
where
L = vector linear differential operator

1 n n "
M -—

and in every such differential equation, the order of M is necessarily
lower than that of L.
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Proof. Differentiation of (2.1) yields

y - HGu = (HF + H)x.
Differentiating once again we have

J - Hot - (HG + HFG + 2HG)u

—(iF° + IF + 5F + i)x.

We continue in this manner until n derivatives have been taken,
and then group the results fram the zeroth derivative on down in matrix

form, i.e.,

y H

y - HGu HF + H

(5.2) ¥ - HGh - (2HG + HG + HFG)u| = HF2 +HF + HP + H |x.

- J L -

If we consider the coefficient matrix on the right side of (5.2) at any
time to, we can obtain a set of linearly dependent rows of dimension Kk,
2= k=n+1, such that k-l of these are linearly independent. We then
merely express one of the row vectors in terms of the remaining k-1 vectors
and rewrite this relationship using the left side of (5.2) (evaluated at
to). The result is & relation involving y, u, and various of their deri-

vatives all evaluated at to. Since to is an arbitrary point on the
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interval of definition of the system, then as long as the various deri-
vatives of H, G, F are continuous, this procedure implies the existence
of a differential equation relating y to wu, with continuous (matrix)

coefficients.

If the order of M is not < +the order of I, then the degree
of smoothness of the elements of y (hence of x) cannot be greater than
the degree of smoothness of the elements of u. It follows from (2.1)
and its associated hypotheses that just the opposite is true. Q.E.D.

Remarks: 1. The differential equation obtained by the above
technique will not be unique if k < n + 1 since there is then a choice
of the row vectors used in the linear dependence argument. Similarly,
even if k =n + 1, uniqueness can be destroyed by considering deriva-
tives of (2.1) of order higher than n.

2. Tt should be emphasized that (5.1) is a well-defined ordinary
differential equation only for input functions which are in the domain of
M. However, it has become common practice, by introducing d-functions,
to regard (5.1) as an equation which has a meaning defined in accordance
with the formal operations associated with &-functions when the elements

of the input u do not have the normally required smoothness properties.

5.2. Relationship of a System's Input-output Differential Equa-

tion to its Canonical Structure.

It is assumed in this discussion that the dimension numbers of
those parts of a system's canonical decomposition (type I, Ir, IIT, or
IV) labeled "b" and "d" in Theorem 7 are constants.

The main result is given by

THEOREM 19. (i) The input-output differential equation of a
given system (2.1) depends only on parts "b" and "d" of the system's

canonical decomposition (type I, II, III, or IV).
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(ii) If the dimension of the "b" part is zero, the input-output

differential equation is a homogeneous equation in the output y.

Proof. (i) Follows from the relation (see (2.14))

y(t) = Bo(6)x(t) + B (t)xT(t).

(ii) Since xb(t) = 0, +the input-output differential equation
is essentially implied by the relations

a
%33(" _ 5%l
v(t) = B (6)3(t). Q.E.D.

Remarks:s It is obvious that the input-output differential equation deter-

mines the weighting pattern of a system. If the "d" part of the canonical
decomposition is empty, then, under certain additional assumptions, it is

easy to prove that the weighting pattern determines the input-output

differential equation. (See section 5.5.)

5.3« Relationship to the State-variable Differential Equation

- Preliminaries.

We now consider the problem of obtaining the input-output differen-

tial equation from a given state variable differential equation.
For simplicity we restrict ourselves to those systems such that

(i) the dimension numbers of all parts of any given canonical

decomposition, with the exception of the "b" part, are zero.

(ii) The systems possess the property of differential observabi=-

lity on their intervals of definition. (See Definition 6.)
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Consider the differentially observable system (2.1). As far
as the input-output characteristics are concerned, we may replace (2.1)
by the more convenient set of equations

(5.3) (a) & _ g(t)u(t)
(5.3) (b) y(t) = ¥(t)X(t)

where ¥(.) and ©6(+) are as given in (3.13), and
(5.4) R(t) = o(t, £)x(t)

so that (5.3) and (2.1) are related by a linear transformation on the
state space as shown in (5.4).

If the (left) inverse of ¥(.) in (5.3) were to exist, one could
solve for % in (5.3)(b) and substitute the result into (5.3) (a) to
obtain a differential equation relating y to wu. Since ¥(+) is an
rXxn matrix with rs=n, the rank of ¥ can be n only if r = n,
and the latter condition is necessary if such a trivial solution to the
posed problem can be found.

Iet us consider the more interesting case r <n. The (left) in-
verse of ¥(*) does not exist, but if we differentiate (5.3) (b) and
group the resulting equation with (5.3) (b), the rank of the coefficient
matrix of the state vector will be larger than the rank of ¥(+). The
question arises as to the number of derivatives needed in order to solve
for %. Because of notational complexities, it is expedient to answer the
preceding question by considering separately the two cases listed below.
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Case 1: n dis divisible by r
Case 2: n 1is not divisible by r.

5.4. Discussion of Case 1.

Let z=5‘1;.

We then have

THEOREM 20. Consider the differentially observable system (5.3)
defined on an interyal I. If n (the dimension of the state space)
is divisible by r (the dimension of the output space) then the matrix

(5.5) Vigy (1) = co1 (x(t), ¥P(s), woe, ¥4 0))

is nonsingular Vt € I.

Proof. By Theorem 6 the n columns of ¥(*) must satisfy a
vector differential equation defined on I. By applying the machinery
used in the proof of Theorem 5, it 1s easily shown that such an equation
exists of order {. Then V[Y}(') in (5.5) is a fundamental matrix of
the latter and is hence nonsingular on I. Q.E.D.

Consider now the first { derivatives of (5.3) (b), given by

(5.6) v E ) = ¥ E (0)5(0) + k;,l ) ak(s, 1)
j=0 9 oY
i -
a_“’m,_j.z D 4y, ko, s
ot -

'

where W(t, T) is the weighting pattern of (5.3) given by

(5.7) w(t, ) = ¥(t)e(r).
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Equation (5.6) is & set of | r-dimensional vector equations.
If we group (5.3) (b) with the first g-1 r-dimensional vector sets
together we get the equation

(5.8) X(t) = Vigy(t)R(t) + U(t)
where

¥(t) = col (v(t), ¥Pt), ...y ¥ (e
V{Y}(t) is given by (5.5)
U(t) = col {0, W(t, T)u(t), eee, Y (S‘Q)F_"’SL_I).

s

T =1

+ —1—’-—)-aJW t, T u“qj_l)(t)}.

J
ot T=1%

From Theorem 21, the inverse of V{Y} exists. Hence, we can solve for

% in (5.8) and substitute the result into the Pais equation of (5.6) to

yield the desired result

(5.9 150 - s e - - ¥ o) +

. ‘;:l (+-1 hi(t, 1) , B(t, T) o(2=3-1) )
J=O J a‘.J T =1 atj T =%

where

II'

V-l{Y](t) = inverse of vm(t) in (5.5).

r X r identity matrix
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Notes: (i) The homogeneous equation ((5.9) with u = 0) is satisfied
by the n columns of ¥(-). In fact, the latter is a fundamental matrix
for,and uniquely determineg the homogeneous version of (5.9).

(1) I r =1, V{Y}(-) becomes the Wronskian matrix of the
elements of ¥(°).

5.5. Continued Discussion of Case 1 ~ The Relationship of the
Input-Output Differential Equation to the Weighting Pattern.

We sall show first how to construct the weighting pattern of a
system from its input-output differential equation (5.9) and secondly how
to construct the input-output equation of a system from its weighting
pattern (5.7).

We begin by writing (5.9) in the fomm

(5.10) Z:A t)yL) = z B (t)u('j)
4=0 * 3=0 9

where the {Ai(t)} are real r X r matrices, A l(t) = the identity matrix,
and the {Bj(t)} are real r X p matrices. If we define the operator on
the left hand side of (5.10) as

L i
L ("} = ZA (5) &, ()
v =0 b att
then the formal adjoint of Lt’ denoted by ]'_%‘, is given by
* L
(5.11) (-} = = (-0 L age)-)
i=0 dt

where the "prime" indicates transpose.
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Iet ¥*¥ be a fundamental matrix solution of the homogeneous

solution

I¥{v} = 0 (v = r-dimensional row vector)
such that the function P defined by
(5.12) P(t, 7) = ¥(t)x(r)

has the property

1
(5.13) Q.E(L_'El

3+

‘O, i=0,l, see, l -2

T =1 lA;l(t)

It

Il
H

i=1-1

It is easy to show, by a straightforward extension of the scalar case
[2], that P(t, T) is the weighting pattern for the system whose input-~
output relation is given by

(5.14) L, vy} = v,

i.e., if all initial conditions are zero at t = to’ we have
t

(5.15) y(t) = [ P(t, 7)v(r)ar.
t
o

If we formally identify (5.14) with (5.10), we can rewrite (5.15)
as

| %
(5.16) vt =1 P(t, 7)Y (u(r)lar

o}



~50-

where
(= Fam L )
. )= ZBAT) —. t*}.
(5.17) () = 2By

Consecutive integration of (5.16) by parts provides the final result
t

(5.18) y(t) = [ m¥{B(t, 7)}u(r)ar
%o

where N? is the formal adjoint of M, i.e.,

N -1 1) a9
(5.19) M¥(-} = j§O<— ) i (BY(v)-1.

Comparing (5.18) with (3.3), we have that
(5.20) W(t, 7) = M¥{(P(t, )},
which is a well known result in the scalar case [2].

The inverse problem of obtaining an input-output differential
equation from a given weighting pattern is easily handled by first realiz-

ing the weighting pattern as a system (5.3) and the proceeding as in
section 5.4,

5.6. Discussion of Case 2 (n not divisible by r).

To obtain the input-output differential equation from the state-
variable equation in this case, the procedure is as follows. Differentiate
(5.3) (b) as before to obtain (5.4). The highest needed value of k is now
the inmteger succeeding the number %. Iet this integer be q and let
m=n-req (n<r)., The first q-1 derivatives of (5.3) (b) are of the form




=51~

y(t) = ¥(£)x(t)

By = e w)R(e) + e(e)u(t)

(5.21) . .

s D) - ¥@ Yz « ().

Since the columns of Y(') satisfy a differential equation, the
coefficient matrix of X in (5.21) is always of maximal rank. Hence
choose the first m components of the last equation in (5.21) and

differentiate. The resulting equations have the form

v, (V) = w}ggmm) s ()

(5.22) . .

s D) - D) + ()

where ¥ (+) is the i*B row of the matrix ¥(+).
i

If we regard (5.21, 22) as a set, the coefficient matrix of X
is nonsingular so that % can be solved for. The result is substituted

into the equations
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T (6) = 1) @R+ ()
y, O Dz ()
(5.23) yl(q+l)(t) - YQQ+1)(t)§(t) + ( )
1
v (q+l)(t) = y(q+1)(t)§(t) + ( ).

. Ry

We then have a set of r differential equations relating the variables
Y9s eees Vi to Uy eees up. Of these equations, r - m are of order
q, the rest are of order q+l. The total number of linearly independent
solutions is therefore (r-m)eq + m(qel) = n. We note that since the
columns of ¥(+) are solutions of the associated homogeneous equation,

they must form a basis for the solution space of the latter.

We now discuss the problem of obtaining the weighting pattern from
a given input-output differential equation. Since r doesn't divide n
we camnnot put (5.23) (with X substituted for) into the form (5.10) and
have the determinant of the coefficient of the highest derivative ,—1 0.
Hence, given an input-output differential equation of the form (5.10)
with det Aq+l(t) = 0, we first check if the given equation is equivalent
to (5.23%) (with X substituted for). If it is, the weighting pattern is

obtained as follows.




Iet

(5.24)

qt2

]

il

i

1
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(a)

> V1

o,y

’ s ey y

()

(a)

m

) u]-, e e,

U, e, uéq)
(a)
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Equation (5.24) can be written as

(5.25) . = A(t) . + G(t)u(t).

S ) z
2p+>

Now, if ¢ is the transition matrix for (5.25), the associated weighting

pattern is

W(t, T) = 3(t, T)G(t).

The solution of (5.25) is (with zero initial conditions at t = to)

21
. t
(5.26) . = [ W(t, T)u(r)ar.
. to
“op+3

Since we are interested only in ¥, ..., ¥, (i.e., 24 Zl)’
we simply eliminate all the rows of W which don't correspond to zp+2, Zqe

The remaining matrix is the weighting pattern for the original differential

equation.




55
6. Conclusion.

This paper has presented a comprehensive exposition of certain
topics in linear system theory in which both new and old results have
been incorporated within a single framework. The introduction of anti-
causal systems into the theory has allowed meaningful extension of pre-
vious results and has alded in clarifying and solving some well known

problems.

Although we have concentrated exclusively on time-domain repre-
sentations for linear systems the concepts discussed here play a signi-
ficant role in transform-domain analysis of linear systems. Specifically,
the concepts of C and A impulse responses, adjoint systems, and duval

systems arise quite naturally in the development of the system function

approach to input-output analysis of linear systems [11].
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Figure 3 = The functions g(+) and h(e) in (3.18).



Figure 2 - The Canonical Structure of a System




